·IIIII CISCO

OSI Network Layer

Objectives

- Identify the role of the Network Layer, as it describes communication from one end device to another end device
- Examine the most common Network Layer protocol, Internet Protocol (IP), and its features for providing connectionless and best-effort service
- Understand the principles used to guide the division or grouping of devices into networks
- Understand the hierarchical addressing of devices and how this allows communication between networks
- Understand the fundamentals of routes, next hop addresses and packet forwarding to a destination network

Network Layer Protocols

Network Layer Protocols

Network layer protocols forward encapsulated Transport Layer PDUs between hosts

Network Layer Protocols

Network Layer Protocols

- Internet Protocol version 4 (IPv4)
- Internet Protocol version 6 (IPv6)
- Novell Internetwork Packet Exchange (IPX)
- AppleTalk
- Connectionless Network Service (CLNS/DECNet)

TCP/IP Packet Packet IP Header Segment IP Header Segment TCP segments encapsulated into IP packets

Network Layer Protocols and Internet Protocol

IP Packets flow through the internetwork.

- Connectionless No connection is established before sending data packets.
- Best Effort (unreliable) No overhead is used to guarantee packet delivery.
- Media Independent Operates independently of the medium carrying the data.

(IP)

Connectionless Communication

A letter is sent.

The receiver doesn't know:

· when it is coming

Best Effort

As an unreliable Network layer protocol, IP does not guarantee that all sent packets will be received.

Other protocols manage the process of tracking packets and ensuring their delivery.

Media Independence

IP packets can travel over different media.

Generating IP Packets

Transport Layer Encapsulation

Segment Header	Data
-------------------	------

In TCP/IP based networks, the Network layer PDU is the IP packet.

IPv4 Packet Header Fields

Traffic Types

- Unicast Vs Multicast Vs Broadcast
 - Unicast:- One source, One destination
 - Multicast:- One source , Many destination
 - Broadcast:-One source , All destinations
- Routers never forward the Broadcast traffic

Grouping Devices into Networks and Hierarchical Addressing

The simple fact of wiring together the physical network can make geographic location a logical place to start when segmenting a network.

Segmentation of networks

- Purpose of network segmentation are:-
 - Increase Network performance
 - Increase Network Security
 - Increase Network Management

Increase Network performance

All devices in this network are connected in one broadcast domain when the switch is set to the factory default settings. Since switches forward broadcasts by default, broadcasts are processed by all devices in this network.

Replacing the middle switch with a router creates 2 IP subnets, hence, 2 distinct broadcast domains. All devices are connected but local broadcasts are contained.

Increase Network Security

Increase Network manageability

Grouping Devices into Networks and Hierarchical Addressing

Hierarchical Addressing

TO: Jane Doe 170 West Tasman Drive, San Jose, CA 95134, USA

At each step of delivery, the post office need only examine the next hierarchical level.

Grouping Devices into Networks and Hierarchical Addressing

Hierarchical IPv4 Address

Gateways Enable Communications between Networks

Configuring the IP address & default gateway

Configuring the IP address & default gateway

Confirming the Gateway Settings

C: \>ipconfig Windows IP Configuration Ethernet adapter Local Area Connection: Connection-specific DNS Suffix . : Default gateway address for this host computer

Sample ipconfig output showing default gateway address

Local Router Routing Table

The next hop for both networks 10.1.1.0/24 and 10.1.2.0/24 from Local Router is 192.168.1.2/24

Route Entry Exists

No Route Entry But Default Route Exists

Roll over to see the steps the router takes.

No Route Entry and No Default Route

Static Routing

Router B learns about Router C's networks dynamically. Router B's next hop to 10.1.1.0 and 10.1.2.0 is 192.168.1.2 (Router C). Router A learns about Router C's networks dynamically from Router B. Router A's next hop to 10.1.1.0 and 10.1.2.0 is 192.168.2.2 (Router B).

·IIIII CISCO

Addressing the Network – IPv4

Objectives

- Explain the structure IP addressing and demonstrate the ability to convert between 8-bit binary and decimal numbers.
- Given an IPv4 address, classify by type and describe how it is used in the network
- Explain how addresses are assigned to networks by ISPs and within networks by administrators
- Determine the network portion of the host address and explain the role of the subnet mask in dividing networks.
- Given IPv4 addressing information and design criteria, calculate the appropriate addressing components.
- Use common testing utilities to verify and test network connectivity and operational status of the IP protocol stack on a host.

IP Addressing Structure

Internet Protocol (TCP/IP) Properties	I see you have	
General	assigned me	
You can get IP settings assigned automatically if your network supports	an IP address	
this capability. Otherwise, you need to ask your network administrator for	11000000.1010	
the appropriate IP settings.	1000.00000001.	
O Obtain an IP address automatically	00000101	\geq
Use the following IP address:	Now other	
IP address: 192.168.1.5	hosts can find	
Subnet mask:	me!	
C Obtain DNS server address automatically		R
Use the following DNS server addresses:		
Preferred DNS server:		
Alternate DNS server:		L
		TT
Advanced		
OK Cancel		

IP version 4 (IPv4) is the current form of addressing used on the Internet.

IP Addressing Structure

IPv4 Addresses

192 .	168 .	10	. 1
11000000	11000000	11000000	11000000

The computer using this IP address is on network 192.168.10.0.

Binary To Decimal Conversion

11110101 in Binary = Decimal Number 245

Classify and Define IPv4 Addresses

Classify and Define IPv4 Addresses

Limited Broadcast

IP address Classes

IP Address Classes

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	0000000- 0111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	1000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
с	192-223	11000000- 11011111	N.N.N.H	255.255.255.0	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	11100000- 11101111	NA (multicast)		
E	240-255	11110000- 11111111	NA (experimental)		

** All zeros (0) and all ones (1) are invalid hosts addresses.

Subnet mask

Applying the Subnet Mask

A device with address 192.0.0.1 belongs to network 192.0.0.0

High order bits Prefix /16		Low order bits		
	192 .	0.	0	. 1
Host Address	11000000	0000000	0000000	0000001
	255	255	0	0
Subnet Mask	11111111	11111111	0000000	0000000
Network Address	11000000	00 00 00 00	0000000	0000000
Network	192 .	ο.	0	. 0

Private Addresses

- These private IP addresses are for intra-network use only and can not be routed across the Internet.
- These private addresses are
 - •Class A → 10.0.0/8 to 10.255.255.255/8
 - •Class B \rightarrow 172.16.0.0/16 to 172.31.255.255/16
 - •Class C \rightarrow 192.168.0.0/24 to 192.168.255.255/24

Private IP Addresses

Private IP addresses are another solution to the problem of the impending exhaustion of public IP addresses.As mentioned, public networks require hosts to have unique IP addresses.

However, private networks that are not connected to the Internet may use any host addresses, as long as each host within the private network is unique.

Class	RFC 1918 internal address range
A	10.0.0.0 to 10.255.255.255
В	172.16.0.0 to 172.31.255.255
С	192.168.0.0 to 192.168.255.255

Private IP Addresses

Classify and Define IPv4 Addresses

#